A Simple and Rapid Method for Synthesis of N,2-Diaryl Diazenecarboxamides

Jian Ping $\mathrm{LI^{1}*},$ Hong WANG $^{1},$ Yu Lu WANG $^{1},$ Xiao Yang WANG $^{2},$ Cai Lan WANG $^{1},$ Dong Lan $\mathrm{MA^{1}}$

¹Department of Chemistry, Henan Normal University, Xinxiang 453002 ²Department of Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Using $Fe_2(SO_4)_3/H_2SO_4$ as oxidant, nine N,2-diaryl diazenecarboxamides were synthesized from diaryl substituted semicarbazides in excellent yield under mild conditions for the first time. This method is simple, convenient and rapid.

Keywords: Oxidant; synthesis; semicarbazides; N,2-diaryl diazenecarboxamides.

It is well known that azo compounds have been widely utilized as analytic reagents and dyes. They can also be used in material of non-linear optics, material of optics information storing in laser disk, and dyes with oil solubility in photochromy in modern technology¹. Recently, many noteworthy studies show that azo benzene derivatives possess very good optic remembering and photoelectric properties. Optical-switching and image storage can be made by azobenzene liquid crystal film^{2,3}. The preparation of azo compounds have been described in many literatures⁴⁻⁶. In this paper, using Fe₂(SO₄)₃/H₂SO₄ as oxidant, nine N,2-diaryl diazenecarboxamides were synthesized from diaryl substituted semicarbazides under mild conditions for the first time. This method is rapid, simple, convenient and suitable for base sensitive compounds.

To 1.0 mmol 1,4-diaryl substituted semicarbazides $la-1i^7$ in $10\sim15$ mL acetone, 2.0 mmol $Fe_2(SO_4)_3\cdot 6H_2O$ in 5 mL 2mol/L H_2SO_4 aqueous solution was added and the mixture was heated under gentle reflux. The color of solution changed to orange-red or deep-red rapidly. After $3\sim5$ minutes, 30 mL cold water added. Orange-red or deep-red flocculent deposit was produced. The mixture was filtered and washed with water. The product was dried below $50^{\circ}C$ in vacuum. The structure of products were identified by elemental analysis, IR and 1HNMR spectra.

Table 1. m.p., color, yield and elemental analysis of compounds 2a-2i

compd.	m.p.°C	color	yield(%)	Elemental analyses(found)		
				C	N	Н
2a	111-113	deep-red	96.0	69.31(69.10)	18.66(19.01)	4.93(4.80)
2b	102-104	orange-red	89.2	70.29(70.02)	17.57(17.95)	5.44(5.21)
2c	68-70	orange-red	90.1	70.29(70.14)	17.57(17.89)	5.44(5.13)
2d	105-106	orange-red	88.7	70.29(70.09)	17.57(17.99)	5.44(5.62)
2e	126-127	orange-red	94.5	66.91(67.07)	15.61(16.06)	5.58(5.22)
2f	123-125	deep-red	93.0	71.15(70.98)	16.60(16.92)	5.93(5.56)
2g	119-121	yellow	96.5	71.15(70.89)	16.60(16.97)	5.93(5.62)
2h	117-119	orange-yellow	98.0	71.15(71.01)	16.60(16.89)	5.93(5.53)
2i	127-129	orange-red	95.4	71.15(71.06)	16.60(17.01)	5.93(5.48)

Table 2. IR and ¹HNMR spectra data of compounds 2a-2i

compd.	IR(cm ⁻¹)				¹ HNMR (ppm)		
-	N-H	C=O	N=N	N-H	ArH	CH_3	
2a	3230	1690	1410	8.90 (s, 1H)	7.02-7.90 (m, 10H)		
2b	3200	1680	1405	8.25 (s, 1H)	7.02-8.03 (m, 9H)	2.25 (s, 3H)	
2c	3350	1690	1415	8.20 (s, 1H)	6.84-8.02 (m, 9H)	2.26 (s, 3H)	
2d	3180	1685	1410	8.16 (s, 1H)	7.04-8.04 (m, 9H)	2.24 (s, 3H)	
2e	3310	1680	1410	8.24 (s, 1H)	6.85-8.00 (m, 9H)	1.26 (t, 3H) 3.85 (q, 2H)	
2f	3190	1700	1430	8.22 (s, 1H)	7.03-8.02 (m, 8H)	2.23(s, 6H)	
2g	3300	1680	1435	8.23 (s, 1H)	6.88-8.03 (m, 8H)	2.24 (s, 6H)	
2h	3250	1685	1425	7.68 (s, 1H)	7.30-8.00 (m, 8H)	2.25 (s, 6H)	
2i	3260	1695	1420	8.22 (s, 1H)	7.04-8.00 (m, 8H)	2.24 (s, 6H)	

We have developed a convinent, rapid and simple method for preparing N, 2-diaryl diazenecarboxamides from diaryl substituted semicarbazides.

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China and Technology Commission of Henan Province.

References

- 1. X. J. Peng, J. Z. Yang, Chin. Image Sci. and Practice, 1988, 4, 5.
- 2. D. Campbel, L. R. Dix, P. Rostron, Dyes Pign., 1995, 29 (1), 77.
- 3. T. Ikeda, O. Tsutumi, Science, 1995, 268, 1873.
- 4. Y. L. Wang, C. J. Ru, J. P. Li, H. Wang, D. L. Ma, Synth. Commun., 1994, 24, 1737.
- 5. W. Malinowski, J. Szadowski, Pol. J. Appl. Chem., 1993, 37, 127.
- 6. J. P. Li, J. Y. Wang, D. L. Ma, Y. L. Wang, Chin. Chem. Lett., 1996, 7(5), 393.
- 7. N. Rabjohn, Edited. Org. Synth. Coll, Vol. IV., New York: John Wiley & Sons Inc., 1963, p49.

Received 29 October 1998 Revised 15 March 1999